
Minxuan Zhou — Research Statement

My vision is to build next-generation computer systems that leverage cutting-edge hardware tech-
nologies to tackle the extreme challenges of processing emerging applications on conventional systems.
My research involves extensive co-design of hardware and software that innovates hardware systems
driven by application needs and develops software to unlock the hardware’s potential.

I am currently a Lead Postdoctoral Researcher at the Center for Processing with Intelligent
Storage and Memory (PRISM), one of seven large, multi-disciplinary academic research centers in
Joint University Microelectronics Program 2.0 (JUMP 2.0) funded by Semiconductor Research Cor-
poration (SRC) and DARPA. I am leading a team of students at UCSD in multiple research projects
that involve interdisciplinary efforts in algorithms, systems, architecture, and circuit design. I am ac-
tively collaborating with researchers from different universities and SRC member companies, including
UCSD, UVA, PSU, UIUC, UW-Madison, Stanford, UCI, UCLA, Intel, IBM, Micron, SK Hynix, Sam-
sung, etc. In my doctoral and postdoctoral research, I participated in writing several proposals that led
to research funding from NSF, DARPA, SRC, and industrial companies.
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Figure 1: The overview of my research that builds efficient and practical IMS systems.

My research focuses on intelligent memory and storage (IMS), a technology that promises to
overcome the significant challenges of processing emerging data-intensive applications on conventional
systems. However, as a novel technology supports non-conventional processing paradigms, building ef-
ficient IMS systems requires not only holistic co-optimization of hardware architectures, system soft-
ware, and application mappings but also tools that assist the system development and deployment.
Motivated by these challenges, my research (Figure 1) investigates the full-stack design of IMS-enabled
systems to accelerate various emerging applications with an exploration of diverse IMS technologies. A
significant part of my research is building efficient IMS systems for machine learning (ML) workloads. I
developed the first compiler that optimizes the holistic mapping of ML models onto IMS systems [8] and
the first IMS-based software-hardware co-design for Transformers [19]. In addition to ML workloads,
my research explored various critical but challenging application fields including bioinformatics, graph
processing, and post-quantum cryptography. A noteworthy outcome is that my collaboration with Intel
on the DARPA DRIVE program contributed to a new chip product for accelerating post-quantum cryp-
tography [4, 15]. Furthermore, I developed novel system tools to improve the efficiency, usability, and
reliability of IMS systems. Moving forward, I aim to pioneer future systems, such as large-scale hetero-
geneous systems and embedded systems, that exploit cutting-edge hardware technologies for computing,
data storage, and interconnection to accelerate emerging applications in different scenarios. I plan to de-
velop software, such as AI-powered design automation tools and general compiler infrastructures, to
help develop and deploy future systems. Furthermore, I am enthusiastic about innovating algorithms
based on non-conventional hardware paradigms for emerging applications.

IMS Acceleration of Machine Learning with Mapping and Hardware Optimizations
Machine learning (ML) models have become increasingly important and require tremendous computing
resources. Due to its data-intensive nature and regularized computation, ML workload is a promising
target for processing in-memory (PIM), an IMS technology that supports highly parallel arithmetic
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operations with extensively large bandwidth. With collaborators and mentees, I designed novel software
tools and hardware architectures for ML accelerators based on PIM technologies.

Holistic optimization of mapping ML models onto PIM accelerators

Each operator (i.e., layer) in ML models contains extensive parallel computations that require different
input data segments. Therefore, the scheduling of computations on ML accelerators directly impacts the
hardware data flow, resulting in the ML mapping problem. However, mapping an ML model onto PIM
accelerators is significantly different from and more complicated than traditional ML accelerators. First,
unlike conventional ML accelerators that process a small number of layers at a time, PIM accelerators
require a holistic mapping of all layers to utilize the memory fully. Furthermore, each PIM mapping
requires a unique data layout in the memory, resulting in mutual impacts between the mappings of
different layers in holistic optimization. To tackle these challenges, I developed PIM-DL [8], the first
ML-PIM mapping framework that efficiently explores the design space via a comprehensive data layout
modeling and an efficient optimization algorithm. I further developed several mapping tools [2, 17]
that consider more fine-grained mapping (e.g., computation overlaps between layers) to improve the
throughput. These are the earliest efforts that systematically investigated the mapping of ML models
on IMS accelerators, significantly easing the efficient deployment of ML-PIM acceleration.

PIM acceleration for emerging ML models

My recent research focused on PIM acceleration for emerging ML models such as models with at-
tention, one of the most significant algorithm innovations in recent years. The attention mechanism is
computing- and memory-intensive with limited scalability due to extensive memory footprint and sparse
data locality. When processing attention-based models on PIM, the layer-based data layout, considered
by PIM-DL [8], introduced a significant overhead due to cross-layer data movements. This necessitates
novel data flow optimizations for attention-based models. To tackle these challenges, I proposed MAT [9],
a PIM accelerator with an optimized pipeline execution for long-sequence attention. In collaboration
with biomedical experts at UW-Madison, MAT [9] outperforms GPUs by up to 40 × on high-resolution
biomedical image classification. Furthermore, I proposed TransPIM [19], which targets Transformer,
the most widely used attention-based model. TransPIM adopts a new token-sharding data layout to re-
duce the data movement overhead in Transformer. Furthermore, TransPIM features a novel hybrid PIM
hardware, that integrates low-cost near-memory logic in memory to accelerate Transformer operations.
Such software-hardware co-design enables TransPIM, as the first PIM-Transformer accelerator, to
provide 22× to 115× speedup over state-of-the-art GPUs. I also explored PIM to accelerate models
with algorithmic optimizations. With collaborators at the Pennsylvania State University, I proposed an
end-to-end PIM framework to support Transformers with dynamic token pruning [5]. In addition, I
designed PIM accelerators for non-neural-network ML models, like hyperdimensional computing [1].

Software-Hardware Co-Design of IMS Systems to Accelerate Emerging Applications
In addition to ML-PIM acceleration, my research explored broad IMS technologies with hardware-
software co-design for emerging applications that are critical for advancing life science (bioinformat-
ics) [7, 18], processing big data for deep insights (graph processing) [10, 11, 14], and securing data
privacy (fully holomorphic encryption) [4, 15].

Scalable near-data processing for accelerating bioinformatics

With collaborators from the University of Virginia and the Department of Bioinformatics at UCSD, I
designed two near-data processing (NDP) systems [18, 7] for genome analysis which is an essential
task in bioinformatics for detecting disease (e.g., cancer) and biological information in environmental
samples (e.g., COVID virus). The critical concern of designing bioinformatics IMS systems is scalability
that supports efficient data processing at scale. Furthermore, genome analysis requires intensive non-
arithmetic operations. These facts make NDP, which supports scalable general-purpose processing,
preferable to other IMS technologies. In [18], I designed a near-memory accelerator for de Bruijn graph,
which assembles a whole genome sequence based on highly fragmented and duplicated short sequences
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(i.e., reads) without a reference genome. I implemented an NDP-parallel de Bruijn graph algorithmic
framework to utilize the memory bandwidth fully when scaling up. Furthermore, to accelerate genome
analysis tasks on systems that require storage devices for large datasets, I designed Abakus [7], which
accelerates k-mer (i.e., a DNA sequence with length k) counting, a performance bottleneck in most
genome analysis applications. Abakus [7] is based on solid-state drive (SSD), which supports arbitrarily
large bioinformatics data when memory scaling is too expensive. Overall, these accelerators are at least
10× faster than conventional systems, and speedups significantly increase when scaling up the system.

Exploit PIM to parallelize computations with random data patterns in graph processing

Graph processing is known as challenging due to random access patterns on big data. In GRAM [10],
I proposed a PIM-based vertex program algorithm that parallelizes the graph processing operations by
exploiting the extremely long vector processing capability in the PIM accelerator. To tackle the chal-
lenges of random data dependency, the PIM-based algorithm adopts in-memory search operations to
fetch a large batch of random data for computation efficiently. With such hardware-driven algorithm
re-design, GRAM outperformed prior PIM-based accelerators on classic graph algorithms by 4×. Fur-
thermore, I proposed HyGraph [14], which adopted GRAM’s algorithm on a hybrid PIM-NDP accelerator
with a graph-aware operation scheduling, achieving 2× speedup over PIM-only GRAM.

Memory acceleration and optimization for fully homomorphic encryption

In the last two years, at UCSD and Intel Labs, I have been collaborating with cryptography and chip
design experts on hardware acceleration for fully homomorphic encryption (FHE), an important post-
quantum cryptography algorithm. FHE introduces at least 4 orders of magnitude data and computation
overhead, as compared to the plaintext computation. Such challenges necessitate specialized systems
with high computation throughput and memory bandwidth to enable practical FHE applications. I pro-
posed FHEmem [15], an FHE accelerator that adopted a novel PIM architecture with cost-efficient in-
memory logic to support complicated FHE operations. With an FHE-PIM compilation framework that
optimizes the data layout of pipeline execution, FHEmem is 4× faster with 7× better performance-cost
efficiency than state-of-the-art FHE accelerators, leading to 5 orders of magnitude improvement over
conventional systems. Furthermore, I tackled issues in real systems equipped with FHE accelerators by
architectural and compiler-level optimizations. For example, I proposed a new interconnect architecture
and memory allocation optimizations to solve the memory under-utilization problem when scaling up
the FHE accelerator system [4]. My research has contributed to the chip design of an upcoming FHE
accelerator product, which will be used in future data centers for securing data privacy efficiently.

Software Tools for developing and deploying IMS architecture
The software tools, including simulator, compiler, and system runtime, are critical to the development
and deployment of novel systems. In addition to the application-specific mapping frameworks and
algorithms mentioned above, I developed several tools for emerging IMS systems to ease the design
process [13], automate program scheduling [6], and improve system reliability [3, 12, 16]. DP-SIM [13]
is a full-stack simulation infrastructure for exploring software-hardware co-design of PIM architec-
tures. DP-SIM has a front-end library for PIM-enabled algorithm implementation, a middle-end memory
allocation framework for compiler-level scheduling, and a back-end PIM simulator for architectural ex-
ploration. PIMProf [6] is an LLVM-based PIM offloading tool, that can automatically offload opera-
tions in off-the-shell programs to PIM-enabled main memory in conventional systems. PIMProf tackles
the challenges of deciding appropriate program blocks that are offloaded to memory-side processors to
improve the system performance. I proposed compiler-level thermal optimization tools that use static
optimization and dynamic management of data layout in emerging memories, including PIM accelera-
tors [3, 12] and 3D DRAM cache [16], to resolve reliability issues caused by temperature violations.

Future Directions
My previous research found that emerging IMS technologies hold great promise for use in a variety of
application domains. I recognized the crucial role of software support in ensuring system efficiency and
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reliability. In the future, I plan to deepen my research in designing novel systems for real-world emerging
applications via hardware innovations, full-stack software tools, and technology-driven algorithms.

Technology-driven design of future systems for emerging application scenarios

As emerging applications become increasingly challenging but different applications significantly vary
in computation and data patterns, innovating computer systems based on various cutting-edge hard-
ware technologies has become essential to continue speeding up computation. Given my experience
in hardware-software co-design for emerging data-intensive applications, I am enthusiastic about de-
signing the next-generation large-scale heterogeneous system, which consists of various accelerators,
emerging memory and storage, and advanced interconnection technology (e.g., compute-express links).
I believe a holistic innovation of the whole system is critical to boosting the performance of more and
more challenging applications. I am interested in expanding my current work on machine learning,
bioinformatics, graph processing, and cryptography to large-scale heterogeneous systems, that provide
significant efficiency improvement on big data. In addition to application-specific acceleration, I plan to
investigate more general-purpose heterogeneous systems that support various application domains with
the minimum customization cost. This is inspired by GPU, where the high-throughput compute units
can significantly accelerate both graphics and machine learning applications. In future heterogeneous
systems, different applications can share hardware components, including accelerators for commonly
used kernels and function-augmented general-purpose components such as cache, memory, storage, and
interconnect. In addition to large-scale heterogenous systems, I am interested in conducting similar re-
search for designing other systems such as low-power embedded systems for supporting emerging IoT
applications by new hardware technologies.

Full-stack support for future heterogeneous systems with emerging hardware technologies

As systems become more heterogeneous with emerging hardware technologies for various applications,
design optimization and efficient utilization of such systems are increasingly challenging. Given my
experience in software-hardware co-design of accelerators and design/deployment automation tools, I
plan to develop the end-to-end stack for next-generation heterogeneous systems. The full-stack support
includes the programming interface, compiler, system runtime, and design automation tools. For
example, one of my ongoing projects, collaborating with researchers at UIUC, is to develop the general
compiler infrastructure and runtime management for heterogeneous and distributed systems with various
IMS devices connected by novel interconnect. The infrastructure aims to provide the programming
interface to exploit IMS operations in C++ programming using the LLVM facilities and adopt several
compiler-level optimization passes to adaptively optimize the data layout and operation scheduling based
on the system architecture. I plan to expand the compiler infrastructure to support heterogeneous systems
with a variety of accelerators that share the same intermediate compiler layers. Furthermore, I plan
to develop tools with mathematical optimization and machine-learning techniques to automate the
design of hardware architecture and optimize system runtime management for emerging systems, for
which I have started a collaboration with Intel Labs and plan to continue contributing. These tools can
significantly speed up the development and deployment of next-generation systems.

Algorithm innovation with non-conventional computing on emerging hardware

Emerging hardware technologies support non-conventional computing paradigms such as processing
using-memory, quantum computing, analog computing, and biological computing. Even though it is
possible to exploit such emerging hardware to accelerate classical algorithms, the incompatibility be-
tween the hardware mechanism and conventional computing may offset the benefits of hardware inno-
vation. As shown in my work on graph acceleration [10, 14], algorithm innovation might be critical to
exploit the full potential of novel hardware with non-conventional computing. I plan to design hardware-
friendly algorithms for emerging applications that use the native characteristics of cutting-edge tech-
nologies. Redesigning or approximating algorithms with such non-conventional operations can achieve
significantly higher efficiency than directly computing the classic algorithms. Such hardware-driven
non-conventional algorithms are possible game-changers in the future of computer science.
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